The Role of relA and spoT in Yersinia pestis KIM5+ Pathogenicity

نویسندگان

  • Wei Sun
  • Kenneth L. Roland
  • Christine G. Branger
  • Xiaoying Kuang
  • Roy Curtiss
چکیده

The ppGpp molecule is part of a highly conserved regulatory system for mediating the growth response to various environmental conditions. This mechanism may represent a common strategy whereby pathogens such as Yersinia pestis, the causative agent of plague, regulate the virulence gene programs required for invasion, survival and persistence within host cells to match the capacity for growth. The products of the relA and spoT genes carry out ppGpp synthesis. To investigate the role of ppGpp on growth, protein synthesis, gene expression and virulence, we constructed a Delta relA Delta spoT Y. pestis mutant. The mutant was no longer able to synthesize ppGpp in response to amino acid or carbon starvation, as expected. We also found that it exhibited several novel phenotypes, including a reduced growth rate and autoaggregation at 26 degrees C. In addition, there was a reduction in the level of secretion of key virulence proteins and the mutant was > 1,000-fold less virulent than its wild-type parent strain. Mice vaccinated subcutaneously (s.c.) with 2.5x10(4) CFU of the Delta relA Delta spoT mutant developed high anti-Y. pestis serum IgG titers, were completely protected against s.c. challenge with 1.5x10(5) CFU of virulent Y. pestis and partially protected (60% survival) against pulmonary challenge with 2.0x10(4) CFU of virulent Y. pestis. Our results indicate that ppGpp represents an important virulence determinant in Y. pestis and the Delta relA Delta spoT mutant strain is a promising vaccine candidate to provide protection against plague.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphoglucomutase of Yersinia pestis is required for autoaggregation and polymyxin B resistance.

Yersinia pestis, the causative agent of plague, autoaggregates within a few minutes of cessation of shaking when grown at 28 degrees C. To identify the autoaggregation factor of Y. pestis, we performed mariner-based transposon mutagenesis. Autoaggregation-defective mutants from three different pools were identified, each with a transposon insertion at a different position within the gene encodi...

متن کامل

Effect of fat in ground beef on the growth and virulence plasmid (pYV) stability in Yersinia pestis.

Knowledge of the behavior of Yersinia pestis in food may be useful in the event Y. pestis is used in a bioterrorism attack on the food supply. However, there are no reports on the growth of plasmid-bearing (pYV) virulent Y. pestis in food. The growth of a conditionally virulent pYV-bearing Y. pestis KIM5 in sterile raw ground beef with 7, 15 and 25% fat content was studied at 0, 4, 10 and 25 de...

متن کامل

Mice Naturally Resistant to Yersinia pestis pgm Strains Commonly Used in Pathogenicity Studies

Plague in humans is caused by the gram-negative bacterium Yersinia pestis (6). The disease is 50 to 100% fatal if untreated and potentially could be caused on an epidemic scale by a malicious act. Accordingly, there is a need to understand the pathogenesis of Y. pestis and to enhance resistance to plague in people. A major virulence property of the plague-causing bacteria is the production of a...

متن کامل

The plague virulence protein YopM targets the innate immune response by causing a global depletion of NK cells.

Yersinia pestis, the etiologic agent of plague, delivers six Yersinia outer proteins (Yops) into host cells upon direct bacterial contact. One of these, YopM, is necessary for virulence in a mouse model of septicemic plague, but its pathogenic function is unknown. We report here the immune processes affected by YopM during infection. To test whether the innate or adaptive immune system is targe...

متن کامل

Role of a new intimin/invasin-like protein in Yersinia pestis virulence.

A comprehensive TnphoA mutant library was constructed in Yersinia pestis KIM6 to identify surface proteins involved in Y. pestis host cell invasion and bacterial virulence. Insertion site analysis of the library repeatedly identified a 9,042-bp chromosomal gene (YPO3944), intimin/invasin-like protein (Ilp), similar to the Gram-negative intimin/invasin family of surface proteins. Deletion mutant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009